
Never Commit to
Master

An Introduction to Git Flow
By / Oliver Davies @opdavies

http://www.oliverdavies.co.uk/
http://twitter.com/opdavies

Me
Oliver Davies
Developer and Systems Administrator

 (Twitter, D.O., IRC)

PHPer and Drupalista since 2007 (full time since 2010)
Git user since 2010
Git Flow user since 2013

@opdavies
http://dgo.to/@opdavies

http://twitter.com/opdavies
http://dgo.to/@opdavies

Git Flow is:
"A collection of Git extensions to provide high-level

repository operations for
."

Vincent Driessen's
branching model

From https://github.com/nvie/gitflow

http://nvie.com/git-model
https://github.com/nvie/gitflow

The Branching Model

Branches
master: production code
develop: development code
feature/: a specific task or ticket (multiple)
release/: temporary release branch for testing (single)
hotfix/: temporary branch for emergency fixes
suport/: experimental

Why use Git Flow?
Separation of production and development code
Flexibility
Better code quality
Encourages collaboration
Encourages peer code reviews

My rules of Git Flow
1. Never, ever commit code directly to master
2. Only commit stable code to develop
3. Try not to commit directly to develop
4. One feature branch per user story/bug
5. Commit early, commit often, push often

How do I use it?
CLI
~ $ brew install git-flow
~ $ apt-get install git-flow
~ $ yum install gitflow

 (free, cross-platform GUI)SourceTree

http://www.sourcetreeapp.com/

Need Help?
~ $ git flow help
Shows the standard help menu

~ $ git flow {subcommand} help
Shows the help menu for a specific subcommand

Initialise Git Flow
~ $ git flow init

Create your default branches
~ $ git flow init

No branches exist yet. Base branches must be created now.
Branch name for production releases: [master]
Branch name for "next release" development: [develop]

Configure branch prefixes
~ $ git flow init

No branches exist yet. Base branches must be created now.
Branch name for production releases: [master]
Branch name for "next release" development: [develop]

How to name your supporting branch prefixes?
Feature branches? [feature/]
Release branches? [release/]
Hotfix branches? [hotfix/]
Support branches? [support/]
Version tag prefix? []

Tip: Automatically accept the
default branch names

~ $ git flow init -d
Accepts the default branch names.

Features
$ git flow feature

list: lists all features
checkout: checks out an existing feature
start: starts a new feature
finish: finishes a feature
publish: pushes a feature into a remote repo
pull: pulls a feature from a remote repo

Start a new feature branch
~ $ git flow feature start {name}

~ $ git flow feature start foo

Switched to a new branch 'feature/foo'

Summary of actions:
- A new branch 'feature/foo' was created, based on 'develop'
- You are now on branch 'feature/foo'

Now, start committing on your feature. When done, use:

git flow feature finish foo

Add and commit changes
~ $ drush dl admin_menu
~ $ git add sites/all/modules/contrib/admin_menu
~ $ git commit -m "Added admin_menu"

Recommended: Rebase Your
Feature

Ensure that your feature is up-to-date
~ $ git flow feature rebase

Will try to rebase 'foo'...
First, rewinding head to replay your work on top of it...
Applying: Added admin_menu

Finish a feature
~ $ git flow feature finish {name}

~ $ git flow feature finish foo

Switched to branch 'develop'
Updating 5c04d5a..6487134
Fast-forward
...
31 files changed, 5051 insertions(+)
Deleted branch feature/foo (was 6487134).

Summary of actions:
- The feature branch 'feature/foo' was merged into 'develop'
- Feature branch 'feature/foo' has been removed
- You are now on branch 'develop'

And repeat...

Releases
$ git flow release

list: lists existing releases
start: starts a new release
finish: finishes a release

Start a new release
~ $ git flow release start {version}

~ $ git flow release start 2014-03-02.0

Switched to a new branch 'release/2014-03-02.0'

Summary of actions:
- A new branch 'release/2014-03-02.0' was created, based on 'develop'
- You are now on branch 'release/2014-03-02.0'

Follow-up actions:
- Bump the version number now!
- Start committing last-minute fixes in preparing your release
- When done, run:

 git flow release finish '2014-03-02.0'

Finish a release
~ $ git flow release finish {version}

~ $ git flow release finish 2014-03-02.0

 ...

 Deleted branch release/2014-03-02.0 (was f2aee7d).

 Summary of actions:
 - Latest objects have been fetched from 'origin'
 - Release branch has been merged into 'master'
 - The release was tagged '2014-03-02.0'
 - Release branch has been back-merged into 'develop'
 - Release branch 'release/2014-03-02.0' has been deleted

Pushing changes remotely
~ $ git push --all
Push the changes to the remote branches.

~ $ git push --tags
Push the tags.

Tip: Finish a release in one
command

~ $ git flow release finish -pm {message} {version}
Specify a commit message and automatically push the changes.

~ $ git flow release finish -pm 2014-03-02.0 2014-03-02.0

finish-sprint.sh
~ $./finish-sprint.sh 2014-03-02.1

#!/bin/bash

DRUPAL_DIR="/path/to/drupal/docroot"
TAG=$1

if [-z $TAG]; then
 # A tag must be specified.
 echo 'You must specify a tag.'
fi

Go into the Drupal directory
cd $DRUPAL_DIR

Start a new Git Flow release.
git flow release start $TAG -F

Flush the cache.
drush cc all

Export the database
drush sql-dump --gzip --result-file=../db/$TAG.sql
git add ../db/$TAG.sql
git commit -m "Exported database for $TAG"

Finish and push the release
git flow release finish -pm $TAG $TAG

Hotfixes
$ git flow hotfix

list: list all hotfixes
start: start a hotfix
finish: finish a hotfix

Create a new hotfix
~ $ git flow hotfix start {version}

~ $ git flow hotfix start 2014-03-02.2

Switched to a new branch 'hotfix/2014-03-02.2'

Summary of actions:
- A new branch 'hotfix/2014-03-02.2' was created, based on 'master'
- You are now on branch 'hotfix/2014-03-02.2'

Follow-up actions:
- Bump the version number now!
- Start committing your hot fixes
- When done, run:

 git flow hotfix finish '2014-03-02.2'

Commit your fixes
~ $ git ci -am 'Updated .htaccess'
[hotfix/2014-03-02.2 6d04738] Updated .htaccess
 1 file changed, 4 insertions(+), 4 deletions(-)

Finish the hotfix
~ $ git flow hotfix finish 2014-03-02.2
Switched to branch 'master'
Merge made by the 'recursive' strategy.
 .htaccess | 8 ++++----
 1 file changed, 4 insertions(+), 4 deletions(-)
Switched to branch 'develop'
Merge made by the 'recursive' strategy.
 .htaccess | 8 ++++----
 1 file changed, 4 insertions(+), 4 deletions(-)
Deleted branch hotfix/2014-03-02.2 (was 6d04738).

Summary of actions:
- Latest objects have been fetched from 'origin'
- Hotfix branch has been merged into 'master'
- The hotfix was tagged '2014-03-02.2'
- Hotfix branch has been back-merged into 'develop'
- Hotfix branch 'hotfix/2014-03-02.2' has been deleted

Resources
http://nvie.com/posts/a-successful-git-branching-model/
http://jeffkreeftmeijer.com/2010/why-arent-you-using-git-flow/
http://danielkummer.github.io/git-flow-cheatsheet/
https://github.com/nvie/gitflow
https://github.com/nvie/gitflow/wiki

http://nvie.com/posts/a-successful-git-branching-model/
http://jeffkreeftmeijer.com/2010/why-arent-you-using-git-flow/
http://danielkummer.github.io/git-flow-cheatsheet/
https://github.com/nvie/gitflow
https://github.com/nvie/gitflow/wiki

Demo

Questions?

Thanks
Feedback appreciated!

Slides:
Session evaluation:

http://www.oliverdavies.co.uk/git-flow

http://2014.drupalcamplondon.co.uk/node/add/session-evaluation?
nid=86

http://www.oliverdavies.co.uk/git-flow
http://2014.drupalcamplondon.co.uk/node/add/session-evaluation?nid=86

